

What Is It?

Overview

● An online tool to allow anyone to create simple
applications.
○ No coding necessary (or supported!)

● Built on top of Omnis Studio.
○ It’s a JS Client app.

● Generates an Omnis library.
○ Can be downloaded and extended with Omnis

Studio.
○ Generates clean, commented code.

UX Requirements

Fundamental Questions
Without any code:

● How can the user refer to data?

● How can the user specify application logic?

● How can they build conditional logic?

These areas need intuitive UI.

● Our design partners at PixelStress helped us come
up with a solution.

Defining Data
Data can be defined as Tables in the Data view.
● Either manually or imported.

Variables can also be defined.
● Either ‘Form’ scoped or ‘Global’.

● A preview of the data is shown at
design time.

Referencing Data
General Purpose ‘Data Source’ View

● Same view used everywhere the user can
reference data.

● Different Data Source ‘types’ are shown,
dependant on context.

● The user should become familiar with this
view, wherever they see it.

Referencing Data
Lists and Rows

We tried to keep things simple for the user:

● Generally, a list-based control creates an implicit List variable,
named as the table.

● Also creates a Row variable corresponding to the current row of
the list.

Many situations can be handled only using these.

● Variables are available for more fine-grain control.

Building App Logic
Graphical ‘Actions View’:

● A custom ‘JSON-Defined Control’.

○ Uses a ‘Tree’ data structure - available on Github: github.com/
OmnisStudio/Omnis-Tree-Data-Structure

● Allows user to add/edit ‘actions’.
○ Action: customizable predefined actions.

● Displays the flow of logic as a list of simple card-like views of actions.

○ Supports branching logic.

■ Collapsible sections.

○ “+” icons show the point new actions can be inserted.

○ Drag & drop to re-order.

https://github.com/OmnisStudio/Omnis-Tree-Data-Structure
https://github.com/OmnisStudio/Omnis-Tree-Data-Structure
https://github.com/OmnisStudio/Omnis-Tree-Data-Structure
https://github.com/OmnisStudio/Omnis-Tree-Data-Structure

Condition Editor

Needed a simple way to visualize & edit compound
conditional statements.

● A condition can be broken down to:

● The user needs to be able to group multiple
conditions:
 If (A AND B) OR C

Left Side Operator Right Side

Condition Editor

Condition 1

Condition 2

Group 1 - View Mode

Group 2 - Edit Mode

Benefits To Studio

Subform Set Palettes

New “subformpaletteshow” $clientcommand.

● Opens a subform dialog positioned next to
a given control.

● With an arrow pointing at that control.

Useful to maintain context for an opened
Subform dialog.

Subform Loading Promises
No Code makes heavy use of Subforms.
● In many cases we want to load a subform, then send it a message.

○ With many subforms, this was more complex than is ideal.

Now, if you assign a Subform’s $classname on the client, it will return a
Promise.
● The promise will resolve once the subform instance has loaded.

(Requires a little JavaScript)

Dialog Promises

The promise support has been extended to dialogs.
● $showmessage()
● yesnomessage, noyesmessage & javamessage $clientcommands.

When called on the client, they return a Promise.
● Resolved when the dialog is closed.
● A return value (true/false) is passed for yesno/noyesmessage.

// Store the JS 'result' parameter in the Omnis local var 'lResult'

Color Picker Component

The JS Client Color Picker component developed due
to No Code requirement.

● Allows end-user to pick a color.

○ Express in RGB, HSL or HEX format.

○ Optional alpha component.

○ Option to include ‘swatch’ of predefined
colors.

Camera Component

● New JS Client control to take photos &
scan barcodes using native web APIs.

○ No need for wrapper app.

○ Supports multiple barcode/QR code
formats.

○ Option for default UI controls.

Native List Enhancements

● $reordermode property - allows drag to
re-order rows.
○ None, Left, Right.
○ $reorderbetweengroups to control if

rows can be moved between
groups.

● New ‘Accessory Type’: Menu.
○ Use $menulistname to statically

populate for all rows.
○ $populatemenu method to

dynamically populate.

JS Worker ES Module Support

JavaScript supports 2 module formats: CommonJS and ES Modules.
● JS Worker only supported CommonJS modules.

○ Awkward to use ES Modules in CommonJS modules.

Now also supports ES Modules.
● More modern format.
● Easily import CommonJS or ES Modules.
● Support top-level async/await.

Recommended format for new JS Worker modules.
● No longer need to worry about the format of other imported

modules.

New Edit Field $labelposition

New JS Edit Field $labelposition option:
kJSLabelPosInside

● Shows the field’s $label text inside the bounds of
the control.

Server
Architecture

Containers

The No Code dev environment runs the headless server in a Docker
container.

● Gives total control over runtime environment.

● Sandboxes the application.

● Each user gets their own container instance.

The containers are run in AWS’ Elastic Container Service (ECS).

● ECS terms running container instances ‘Tasks’.

● We have APIs to dynamically start/stop/message Tasks.

Task Pool

Pushing Updates
The container-based architecture allows us a seamless update
mechanism.

● Updates made, rebuild Docker container.
● Push container to AWS’ container ‘registry’.
● Notify the Relay Server:

○ Buffered Tasks killed & restarted
using new container.

○ Assigned tasks sent a ‘RESTful’
request - Omnis lib shows a
badge to the user allowing
them to restart to apply the
update.

Persisting Data

Docker containers are ephemeral - when they’re destroyed, so is any
data written to disk.

● Application information is stored in a central Postgres DB.

● Resource files (library, SQLite DB etc) are stored in Amazon S3.

○ More efficient and cheaper than in Postgres.

● No Code dev server dynamically downloads & uploads from S3 as
required.

○ Using JS Worker

Thank You

