OMNANIS noCode

What Is 11?

Overview

An online tool to allow anyone to create simple
applications.
o No coding necessary (or supported!)

Built on top of Omnis Studio.
o It'sa JS Client app.

Generates an Omnis library.

o Can be downloaded and extended with Omnis
Studio.

o Generates clean, commented code.

UX Requirements

Fundamental Questions
Without any code:

e How can the user refer to data<
e How can the user specify application logic?

e How can they build conditional logic?

These areas need infuitive UI.

e Our design partners at PixelStress helped us come
up with a solution.

Defining Data

Data can be defined as Tables in the Data view.
e FEither manually or imported.

Variables can also be defined.
e FEither ‘Form’ scoped or ‘Global’.

mylList

Data

Data Source

A preview of the data is shown at
design time.

Referencing Data
General Purpose ‘Data Source’ View

e Same view used everywhere the user can
reference data.

Literal Data Row More v

e Different Data Source ‘types’ are shown,
dependant on context.

e The user should become familiar with this
view, wherever they see it.

Referencing Data
Lists and Rows
We tried to keep things simple for the user:

e Generally, alist-based control creates an implicit List variable,
named as the table.

e Also creates a Row variable corresponding to the current row of
the list.

Many situations can be handled only using these.

e Variables are available for more fine-grain conftrol.

Building App Logic
Graphical *Actions View':

Appearance Data Actions .
e A custom 'JSON-Defined Control’.
on click o Uses a ‘Tree’ data structure - available on Github: github.com/
total Increase By 1 OmnisStudio/Omnis-Tree-Data-Structure

+

e Allows user to add/edit ‘actions’.
o Action: customizable predefined actions.

Yes/No Message Open Details?
Do you want to open the details
view for {EmployeesName}?

- e Displays the flow of logic as a list of simple card-like views of actions.
+ o Supports branching logic.
Change Form DetailsView [| Collopsible sections.

Send row Employees

o "“+"jcons show the point new actions can be inserted.

. o Drag & drop to re-order.

https://github.com/OmnisStudio/Omnis-Tree-Data-Structure
https://github.com/OmnisStudio/Omnis-Tree-Data-Structure
https://github.com/OmnisStudio/Omnis-Tree-Data-Structure
https://github.com/OmnisStudio/Omnis-Tree-Data-Structure

Condition Editor

Needed a simple way to visualize & edit compound
conditional statements.

e A condition can be broken down to:
Left Side Operator Right Side
e The user needs to be able to group multiple

condifions:
If (A AND B) OR C

Condition Editor

Table Column .
If Employees Name starts with "a" Condition 1
OR
Table Column Variable, Integer aye
Employees Age is greater than total Condl’rlon 2
AND OR Group 1 - View Mode
Data Row Variable More v Literal DataRow Variable v
) (m
Data Row Data Column Operator Variable
v N v v +
Employees = Name is equal to defaultName (Global)

v Show modifiers

v Show modifiers

‘ Casing v Casing “
. Normal Ignore Case
Add condition
Add group GrOUp 2 - Ed”' MOde

Benefits To Studio

Subform Set Palettes

New “subformpaletteshow’” $clientcommand.

e Opens a subform dialog positioned next to
3 a given control.

e With an arrow pointing at that control.

Useful to maintain context for an opened
Subform dialog.

Subform Loading Promises

No Code makes heavy use of Subforms.

e In many cases we want to load a subform, then send it a message.
o With many subforms, this was more complex than is ideal.

Now, if you assign a Subform'’s $classname on the client, it will return @

Promise.

e The promise will resolve once the subform instance has loaded.
(Requires a little JavaScript)

Do $cinst.$objs.SubFo
JavaScript:IPromise.then(() => {

Do $cinst.$objs.SubForm.$subinst().$myMethod()
JavaScript:})

Dialog Promises

The promise support has been extended to dialogs.

e $showmessage|)
e yesnomessage, noyesmessage & javamessage $clientcommands.

When called on the client, they return a Promise.

e Resolved when the dialog is closed.
e A return value (true/false) is passed for yesno/noyesmessage.

JavaScript:IPromise.then((result) => {

JavaScript:IResult = result; // Store the JS result’ parameter in the Omnis local var 'IResult’
Do $cinst.$showmessage(con("You picked ",|Result))
JavaScript:});

Color Picker Component

The JS Client Color Picker component developed due
to No Code requirement.

e Allows end-user to pick a color.
o Expressin RGB, HSL or HEX format.

209 || 50% || 48% || 066 o Optional alpha component.

<4

o Option fo include ‘swatch’ of predefined
EER BE colors.

Camera Component

I'n n'l
Lokt

Start Barcode Scanner

Barco

de

New JS Client control to take photos &
scan barcodes using native web APIs.

o No need for wrapper app.

o Supports multiple barcode/QR code
formats.

o Option for default Ul controls.

Native List Enhancements

Main Types
AN Button
o

b3
k kJSNativeListAccessoryTypeButton
Disclosure

kJSNativeListAccessoryTypeDisclosure

= { Checkbox

— @ kJSNativeListAccessoryTypeCheckbox

Other Types

Custom

kJSNativeListAccessoryTypeCustom

Custom + event

kJSNativeListAccessoryTypeCustomWithEvent

My Button

Screens +

* Forml

BarcodeScanner

Components

e Sreordermode property - allows drag to
re-order rows.
o None, Leff, Right.
o Sreorderbetweengroups to control if
rows can be moved between
groups.

e New 'Accessory Type': Menu.
o Use $§menulistname to statically
populate for all rows.
o Spopulatemenu method to
dynamically populate.

JS Worker ES Module Support

JavaScript supports 2 module formats: CommonJS and ES Modules.

e JS Worker only supported CommonJS modules.
o Awkward to use ES Modules in CommonJdS modules.

Now also supports ES Modules.

e More modern format.
e FEasily import CommonJS or ES Modules.
e Support top-level async/await.

Recommended format for new JS Worker modules.

e No longer need to worry about the format of other imported
modules.

New Edit Field $labelposition

New JS Edit Field $labelposition option:
kJSLabelPosInside

e Shows the field’s $label text inside the bounds of
the control.

Server
Architecture

Containers

The No Code dev environment runs the headless server in a Docker
container.

e Gives total control over runtime environment.
e Sandboxes the application.

e FEach user gets their own container instance.

The containers are run in AWS' Elastic Container Service (ECS).
e ECS terms running container instances ‘Tasks’.

e We have APIs to dynamically start/stop/message Tasks.

Task Pool

User 1 logs off or idle for too long

Relay Server
nocode.omnis.net

/ Task Pool
K\ Y N
User 2's User 3's
Task ~ Task
\\\\ — ‘\\ L ////
Destroyed
/ Task Buffer \
VN {r - Ve
S D N\
Waiting Waiting Waiting
Task 1 Task 2 | Task N
~ // \\7\ /,/'/ ____ 4

2

~/

Pushing Updates

The container-based architecture allows us a seamless update

mechanism.

e Updates made, rebuild Docker container.
e Push container to AWS' container ‘registry’.
e Notify the Relay Server:

o Buffered Tasks killed & restarted o

using new container. —

o Assigned tasks sent a ‘RESTful’
request - Omnis lib shows a
badge to the user allowing
them to restart fo apply the
update.

C

O Test ~ 1 Deploy

Remote Debug

Update available (&

o0oc

Persisting Data

Docker containers are ephemeral - when they're destroyed, so is any
data written to disk.

e Application information is stored in a central Postgres DB.
e Resource files (library, SQLite DB etc) are stored in Amazon S3.
o More efficient and cheaper than in Postgres.

e No Code dev server dynamically downloads & uploads from S3 as
required.

o Using JS Worker

OMNANIS noCode

Thank You

